
Software is at the core of all our military
systems that provide technological

advantage and strategic superiority over
adversaries. Not only is software essential
in delivering technological advantage, it
also represents a significant portion of the
defense program’s operational capacity –
and a significant investment.

When software applications fall into
the hands of adversaries, they can analyze
weapons, tactics, techniques, and proce-
dures for vulnerabilities, and can produce
countermeasures and more lethal
weapons while saving research and devel-
opment costs [1]. Military forces must pre-
vent their information and weapons assets
from being turned against them.

In the past, systems built with propri-
etary hardware and custom software were
inherently more difficult to attack or
reverse engineer. This approach, however,
has become less desirable as commercial
off-the-shelf (COTS) hardware, operating
systems, and applications provide richer
features, performance, and flexibility while
reducing costs and deployment time.

Modern COTS software is complex,
with a Windows or Unix operating system
and major applications consisting of over
100 million lines of code. At an estimated
frequency of one security bug per thou-
sand lines of source code, a typical system
will have over 100,000 security vulnerabil-
ities [2]. By their nature, COTS systems
are also widely available to and well under-
stood by hackers. Information about vul-
nerabilities is widely shared, and tools for
reverse engineering are readily available on
the Internet. Military adoption of COTS
software makes it potentially easier for
foreign adversaries to reverse engineer and
steal the technological advantage embod-
ied in these software applications.

These facts are recognized by the
Department of Defense (DoD). In
December 2001, the Software Protection
Initiative (SPI) was established to prevent

the exploitation of national security appli-
cation software by U.S. adversaries. As a
U.S.-led initiative, the SPI is on the leading
edge of determining the requirements for
application security and guiding develop-
ment of protection techniques. In addi-
tion to the two traditional components of
information assurance – network security
and operating system integrity – the SPI
recognizes that an application-centric
approach to protecting important DoD
software is an essential third leg to the
information assurance triad [3].

Inherent application security is also
vital for critical infrastructure protection
at home. Energy and utilities, communica-
tions, financial networks, transportation,
and emergency and government services
all depend on maintaining our applications
and networks, which depend on software
that currently lacks this third element in
the triad of information assurance.

The DoD is acting to protect its soft-
ware technology from reverse-engineer-
ing, unauthorized use, theft, and other
types of exploitation. This article address-
es modern techniques to make software
applications inherently secure, and
explores ways to protect vulnerable appli-
cations and the data they handle, including
real-world examples.

The Need for Software
Protection
Commercial and military network security
specialists are beginning to recognize that
application protection is a vital part of
their overall security strategy. Perimeter
security, in which we attempt to protect
vulnerable assets in a trusted environment
behind a secure perimeter, no longer
works.

Firewalls were the first form of infor-
mation technology perimeter defense, but
they remain vulnerable to viruses and
worms that penetrate and compromise
internal systems using authorized network

access vectors. Additional defenses such
as virus scanners and intrusion detection
systems are reactive and remain vulnerable
to new threats. As networks expand, just
defining the perimeter is challenging.
Furthermore, perimeter defenses cannot
protect application software from
exploitation by insiders. With perimeter
defenses breaking down, the result is soft-
ware being deployed in inherently hostile
environments.

Cryptographic technologies have long
been used to protect data in transit and in
storage. However, cryptography assumes
that the end points, or points of use, are
trusted. This is no longer the case as
perimeter defenses such as firewalls break
down and insiders can no longer be trust-
ed. Compromised end-point systems can
render even the best cryptography useless.
Vendors of applications that present intel-
lectual property in the form of music,
movies, and games are representative of
the realization that valuable encrypted
data can only be fully protected by end-to-
end security that encompasses the applica-
tion software in addition to data encryp-
tion.

Application vulnerabilities are impor-
tant for the military because they exist in
one form or another in many military sce-
narios. History tells us that insider threats
can never be ignored when designing mil-
itary systems. COTS-based software com-
pounds the threat by providing hostile
parties with well-understood targets. But
further, military software systems
deployed in the field risk physical capture
by adversaries.

Software protection [4, 5] is vital to
defending these assets.

How Do We Protect the
End-Points?
Currently, the common approach to pro-
tecting the end-points is to use system-
level security by, for example, signing
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and/or encrypting all the software and
data with a cryptographically strong key.
But this approach looks remarkably like
the old approach to network security – a
perimeter or fortress defense – with a soft,
chewy, vulnerable center.

The goal of system-level security is to
build a chain of trust with the root of trust
in hardware [6]. In this approach, the
hardware validates the boot loader, which
validates the kernel, which in turn vali-
dates the applications. Cryptographic [7]
techniques are used to sign the code
involved throughout the trust chain.

Code signing has its limitations. It is
commonly used on the Internet to warn
users of malicious software, called mal-
ware, and/or Trojan Horses that they
might download. To be effective, the host
must be trusted, every application must be
signed, and the user must not want or –
preferably – not even have the option to
download unsigned software. However,
the checking mechanism is typically not
secure itself, meaning that code signing
offers no protection when the host itself
is untrusted or under attack.

Chain of Trust or House
of Cards?
System security can be effective to a point;
however, once broken, everything above
the break, including the intellectual prop-
erty and critical processing within the soft-
ware applications, is exposed in much the
same way as network security is breached
once the firewall is penetrated.

System security is expensive to design
and deploy in the first place and, once
broken, is expensive and/or impractical to
effectively and securely replace. Legacy
issues also complicate upgrades needed to
keep ahead of the latest hacking tech-
niques. For these reasons, software-based
renewable systems are being deployed by
telephone companies for new, always-con-
nected applications such as Internet
Protocol Television (IPTV), where
upgrades can be designed in, allowing
controlled security updates to be pushed
to the system across the network.
Similarly, next-generation cable television
security is moving to renewable software.
Software-renewable systems through
methods such as proactive obfuscation [8]
are one means by which the military can
deploy security that is both robust and
affordable.

Example: Xbox
Microsoft’s Xbox game console is an
interesting public example of an intense
reverse engineering and hacking effort [9].

Microsoft had two goals in locking down
the Xbox: to prevent illegal copying of
their games, and to prevent subsidy fraud
by which a user could use the heavily sub-
sidized hardware for unauthorized appli-
cations or purposes. The Xbox was
designed to ensure that only signed appli-
cations could run, that only the original
Microsoft approved code could be used
on the Xbox, and that copied DVDs could
not be used.

Microsoft realized that not only did
the DVD authentication code need to be
protected against reverse engineering, but
the chain of trust needed to extend down
to the boot loader to ensure that only a
valid operating system could be loaded.
Microsoft left the original boot loader in
the ROM as a decoy that would entice
attackers to waste their time. The true
boot loader was then placed in the graph-
ic controller and written to be self-verify-
ing. The true boot loader contained the
obfuscated key used to decrypt and load
the kernel into memory. The kernel, in
turn, verified that only signed applications
were loaded and only original game DVDs
were being used.

The huge popularity and ready avail-
ability of the Xbox and copy-protected
games provided a large target for the hack-
er community. It took six months to final-
ly break the protection. When the real
boot loader was finally discovered and
reverse engineered, the chain of trust
came tumbling down. Copied DVDs and
other applications could be run on the
hardware. However, to replace the boot
loader required a special mod chip that
required cracking the Xbox cover and
voiding the warranty.

Nevertheless, a second attack was then
developed that exploited a buffer over-
flow, which meant no hardware modifica-
tions were necessary. Since code verifica-
tion only occurred at boot-up, arbitrary
code could be run independent of the sys-
tem-level security.

The Xbox reminds us what happens
when the chain of trust is broken and the
house of cards comes tumbling down. The
Xbox presented a challenging situation
because the system was designed to be self-
contained and autonomous – like many
weapons systems or autonomous vehicles –
and the user untrusted. Captured vehicles
or undetonated bombs present a very sim-
ilar type of threat, albeit infinitely more
dangerous in the military arena.

But Will the Military Do It
Differently?
Military systems can put more constraints

on the user than a commercial producer
like Microsoft can. One obvious improve-
ment would be to include a hardware root
of trust, either in a security chip such as a
Trusted Platform Module, or a removable
component like a smart card or dongle.
The theory behind this approach is that
the smart card can be removed or even
physically destroyed by a trusted user prior
to capture of the system.

The system must be designed to ensure
all the appropriate software is encrypted
and that a necessary secret lies in the
removable key. Without the key stored on
the smart card, the system cannot decrypt
and run software applications. The system
must still boot sufficiently to read the card,
but if it is not present, an attacker will not
be able to jeopardize the system.

But even this added level of protection
has limitations that expose the military to
potential security breaches. For example,
the system could still be reverse engi-
neered by a nation that legitimately pur-
chased it and has access to the entire sys-
tem. Without further precautions, the
technology’s soft, chewy center is
exposed.

The same vulnerabilities would be
exposed if the system were captured by an
adversary when still running, or if the
smart card were not removed, with serious
consequences of disclosure and a possible
weakening of other deployed systems.

A prime example is the U.S. Navy EP-
3E Aries II surveillance plane that made an
emergency landing on Hainan Island in
China in April 2001 after a collision with a
Chinese fighter jet. The plane was valued at
U.S. $80 million and was packed with
sophisticated eavesdropping equipment
[10]. Military experts were concerned that
Japan and the United States would have to
change their secret communication system,
at a cost of millions of dollars, as a result
of Chinese scrutiny of the top-secret
equipment [11]. Application security would
have seriously hampered efforts to reverse
engineer sensitive systems on board.

Missiles and bombs that do not
explode are also vulnerable to reverse-
engineering of weapons and guidance sys-
tems by adversaries. The United Nations
mine clearing officials stated that between
10 percent and 30 percent of the missiles
and bombs dropped on Afghanistan have
not exploded [12]. According to a DoD
briefing, a total of seven Tomahawk cruise
missiles went astray in the Saudi Desert
without exploding [13]. In Kosovo,
Yugoslavia, evidence of missiles and
bombs that had not exploded included a
U.S. $1.25 million High Speed Anti Radar
Missile on a highway and a Maverick anti-



tank missile that had apparently missed its
desired target and embedded itself in the
roadside verge [14].

Planning further defenses against
these scenarios without application securi-
ty exposes the difficulty of trying to patch
together highly specific defenses against
every eventuality. Would a special launch
sequence be required for missiles, loading
a decryption key into memory from a
removable smart card before launch? How
would field officers know if an
autonomous vehicle were downed and
how would they take action to defend the
system? Would sensors track its state so
that random access memory could be
cleared and the system shut down? These
approaches each bring operational scenar-
ios and key management issues into a bat-
tlefield environment with associated train-
ing, readiness, and the need for correct
execution. As keys proliferate, the insider
threat only further increases.

Application Security Provides
Defense in Depth
To be truly effective, there must not be a
soft chewy center, but hardened applica-
tions that are an active part of the chain of
trust. A chain that establishes real trust is
a chain mesh rather than a series of links.
The hardware authenticates the loader,
which authenticates the kernel, which
authenticates the application. The applica-
tion in turn authenticates the hardware,
loader, and kernel while it is running, pre-
venting one break at a low level from pro-
viding the keys to the castle. Application
security provides protection against insid-
ers even if system-level security is com-
promised. Reaction when tampering or an
attack is detected can be as varied as log-
ging, calling home, or an intentional destruc-
tive hostile response such as erasing hard
drives or damaging central processing
units.

Application security further increases
the effort required to break system-level
security because failure is not directly cor-
related to attacker actions. For example,
tampering detected in one part of the
software may result in subtle data errors
that only become obvious elsewhere, mak-
ing it difficult for a hacker to know where

the attack was discovered. Unlike the
perimeter tactics borrowed from network
security, this provides a logical and com-
plex form of defense in depth.

There are a number of application-
level security techniques available to
defend both source code and compiled
applications. Typically, the best strategy is
to combine multiple defenses in ways that
are complementary and protect not only
the application and data, but also each
other.

Application Security
Techniques
To understand application security tech-
niques, it is best to understand the follow-
ing traditional means by which software is
attacked.
• Analysis. Classic reverse engineering

and analysis of the software and pro-
tocols to identify vulnerabilities. This
can be static analysis when the code is
not running such as disassembly and
decompilation, or dynamic tracing of
the executing code using debuggers
and emulators.

• Tampering. Modifying the code and/
or data so that it performs according
to the attacker’s objectives rather than
as designed.

• Automation. The creation of scripts
or code to apply the tampering attack
to multiple copies of the application.
These are also known as class attacks
or global breaks.

Application security techniques are used
to prevent both static and dynamic analy-
sis, as well as static and dynamic tampering
to the software (see Table 1). This tech-
nology includes the following:
• Code obfuscation. Data flow and

control flow transformations to pre-
vent reverse engineering and tampering.

• White-box cryptography [15]. Spe-
cialized obfuscation techniques for
cryptographic algorithms that prevent
secret keys from appearing in memory
during cryptographic operations.

• Integrity verification. Robust on-
disk and in-memory verification to
detect static tampering of the entire
executable and dynamic tampering of
code.

• Anti-debug. Detection and preven-
tion of the use of debuggers and emu-
lators to prevent dynamic analysis.

• Code encryption. Just-in-time de-
cryption of code in memory to pre-
vent static reverse engineering and
tampering. Decompilers are ineffective
with these techniques.

• Diversity [16]. A random seed is typi-
cally used by the tools that implement
the software protection technology
such that a different random seed cre-
ates a structurally different result.
Diversity prevents automated or glob-
al attacks from being developed by
adversaries against the protection tech-
niques.
The first goal is to make static analysis

difficult, time-consuming, and/or expen-
sive. The obvious approach to prevent
static analysis is to encrypt the binary.
While there are techniques to extract these
decrypted executables from memory,
there are also source code techniques that
prevent static analysis such as control flow
flattening, which introduces pointer alias-
ing that can only be resolved at runtime.
In addition, there are specific decompila-
tion and disassembly prevention tech-
niques that target these tools. Note that
while very powerful disassembly tools
exist, most low-level code written in C or
C++ is very difficult to decompile with
only a few tools available. Software pro-
tection is about using multiple layers of
defense and all these techniques should be
considered.

Runtime analysis of a system can be
made very time-consuming by using anti-
debugger and anti-emulation techniques.
A range of techniques unto themselves,
these can be effective on targeted plat-
forms. The code can be tied to the plat-
form via node locking and loading of new
applications controlled by secure code
signing techniques. Advanced just-in-time
decryption (or self-modifying code) tech-
niques also raise the bar against dynamic
analysis. Authentication of components
on the machine and encryption of com-
munication channels, with protocol not
subject to replay attacks, also prevent
analysis. In addition, data flow transfor-
mation techniques can be used to hide and
randomize data values even when operat-
ed on within main memory. White-box
cryptography refers to specific crypto-
graphic implementations designed to pre-
vent key extraction even when the opera-
tion can be statically or dynamically
viewed by an attacker. Steganographic
techniques can also be used for key hiding.

Static tampering is prevented with
binary encryption techniques, as well as by
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introducing data dependencies in the code
to change an easy branch jamming attack
into tampering – increasing the effort
required and involving multiple changes to
the code. An important technique to pre-
vent tampering is code signing, but the
code signing mechanism itself will be sub-
ject to attack and so must also be suitably
hardened. Integrity verification of applica-
tions should be done statically (on-disk) as
well as in memory to prevent dynamic
tampering attacks.

Prevention of automated attacks is
best achieved by deploying code and data
diversity so that a successful attack will
only work for a subset of users. Diversity
of code is a result of most software pro-
tection techniques outlined above. It is
similar to having different keys (diversity
of data) for different users. Diversity of
code recognizes that attacks will be made
on the software in addition to the data.
Automated attacks are also mitigated by
software renewability, which can be made
low cost – if designed in upfront.
Conversely, with hardware-based security,
renewability is a major cost. Software can
be renewed selectively, proactively, or reac-
tively – depending on the strategy and the
attacks to the specific system.

Diversity is a prerequisite for successful
renewability; otherwise, attackers will per-
form differential analysis. This is a power-
ful attack used to quickly determine the
changes made to software upgrades and
shorten the time to successfully hack.

These application security techniques
are integral to the SPI. The SPI’s goals
include institutionalizing software protec-
tion as part of the application software life
cycle and developing user-friendly protec-
tion techniques. Institutionalized and easy-
to-use software protection techniques like
those described above provide an addition-
al layer of security that helps to ensure the
availability of critical assets and infrastruc-
ture while maintaining the strategic lead in
technologies critical to national defense.

Institutionalized application-level secu-
rity techniques can help assure that the
development environment is safe against
insider threats. For example, obfuscation
of source code and diversification of bina-
ries during the development process can
help prevent a production system from
being reverse engineered despite being
protected, because earlier prototypes were
not. Every version sent to the field for
testing can be protected distinctly from
every other version at low cost. This sort
of technique can be particularly important
for the development of complex systems
that involve a significant software engi-
neering factory. Innovations developed by

subgroups within the process can be hid-
den from participants elsewhere in the
product development cycle.

Conclusion
When developers build security directly
into their applications, they significantly
strengthen resistance to attacks, even on
open platforms and in hostile environ-
ments. While system-level security can be
effective to a point, it does not address all
the attack scenarios, especially the insider
attack. Rather than a chain of trust, appli-
cation-level security combines with net-
work security and operating system
integrity to form a chain mesh. COTS sys-
tems lower system development and
deployment costs while application securi-
ty maintains the protection needed in
today’s networked, technically advanced
warfare. Combined, they offer superior
value and flexibility in the quest for battle
readiness and operational success.
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